
CrispyHDL
Java Inner DSL for Verilog

Nuno Paulino
CTM

INESC TEC

CrispyHDL
● Binary Translation Framework required Verilog as an output target…

○ How to generate Verilog systematically?
○ To avoid direct string manipulation (brittle…), we employed compiler techniques (robust)
○ A (nearly) complete Verilog AST package

● Verilog AST package grew → Separate CrispyHDL project

● CrispyHDL
○ Internal Java DSL for Verilog (Inspired by SpinalHDL, Chisel3, etc)
○ Generation of hardware via reusable blocks exploiting high level abstractions

■ Inheritance
■ Generics/Templates
■ Instantiation loops
■ Interfaces

2

Verilog Abstract Syntax Tree (AST) - Java Classes

3

● Each node
○ Is a Verilog element
○ Emits its respective

Verilog source

● Trees of nodes are
constructed via Java
DSL to generate
complete Verilog
modules

Verilog Abstract Syntax Tree (AST) - Example
● Simple statement

example

● Crispy classes are
not meant to be
explicitly instantiated
like this

● The DSL (wrappers)
hides this verbosity

4

ContinuousStatement

target

(2 children)

AdditionExpression

assign regC = regA + regB;emit

(2 children)

Internal
tree

structure

(Some) Crispy API Syntax
● There is also syntax for

○ if
○ if-else
○ always ff
○ always comb
○ initial
○ etc…

● Some (early) handling of
○ Sanity checks
○ Automatic wire generation

5

module example(pA);

// Declarations block: Ports
input wire [7 : 0] pA;

// Declarations block: Wires
wire [7 : 0] ex1;

assign pA = ex1 << 8'd2;

endmodule //example

Programmatic Module Generation

● Declaring a generic module, and then adding blocks, instances, and statements to it
○ Allows for arbitrary module generation integrated into other flows
○ But not clear if this capability is good or bad, in terms of language use/design…

■ Any “HardwareModule” is never finalized (i.e., made immutable) → unless the class is made
abstract (?)

6

module testAdder(testA, testB, testC);

// Declarations block: Ports
input wire [31 : 0] testA;
input wire [31 : 0] testB;
output wire [31 : 0] testC;

always_comb begin : comb_0

 testC <= testA + testB;
end

endmodule //testAdder

Programmatic Module Generation
The tree structure of the previous example

7

Explicit Module Generation via Extension

● This makes Crispy more similar to Chisel or SpinalHDL, but is it the best way?

8

Public members allow easier
syntactic access to ports

Some repetition is required when
ports depend on constructor
arguments… how to avoid?

Inherits all sugar and sanity checking methods
(i.e., “defines” the syntax within this class

Module Instantiation
● Still needs a

significant amount
of work!

● Difficult to:
○ Keep track of

instances
○ Define the proper

abstractions

9

module Add3(inA, inB, inC, outD);

// Declarations block: Ports
input wire [7 : 0] inA;
input wire [7 : 0] inB;
input wire [7 : 0] inC;
output wire [7 : 0] outD;

// Declarations block: Wires
wire [7 : 0] aux1;

Add Add_1926 (

 .inA(inA),
 .inB(inB),
 .outC(aux1)

);

Add Add_1555 (
 .inA(aux1),
 .inB(inC),
 .outC(outD)

);

endmodule //Add3

Future library of building blocks (?)
● Writing a register bank of arbitrary

bit-width and size
○ +/- 5 minutes
○ Validated manually in Vivado simulation

● Future library blocks
○ AXI interfaces?
○ Buses?
○ Caches?
○ Floating point units?

10

Current Application
● Master’s Thesis

○ Generating Hardware Modules via Binary Translation of RISC-V Binaries
■ Translation of RISC-V instruction sequences into Verilog (via BTF + CrispyHDL)

● Reimplementing the Loop Accelerator (from IEEE TLVSI 2019 paper)
○ Easier/faster generation of architecture parameters
○ Integrated with loop extraction and modulo-scheduling
○ Future (partially implemented) integration with synthesis tools, reports, etc

■ e.g. via generation of TCL scripts for Vivado

11

etc...

Programmatically
Generated Modules

Future Direction
● Better abstraction and syntax

○ Variable names via reflection?
○ Better state keeping for module instantiation?

● Base for CGRA Architecture Exploration
○ Design space exploration of CGRA variations
○ Joint software / hardware compilation

● External DSL
○ Tentative name: CrunchyDSL
○ A dedicated parser for Crunchy to translate to internal Crispy nodes
○ Avoids limitations of having Crispy implemented over Java
○ Allows for context specific rules for the language

12

