
P6.Dataflow
Graph Analysis

Tiago Santos
CTM / HumanISE

INESC TEC

Mapping loop-based basic blocks onto accelerators
● Detection on the Binary Translation Framework (BTF)

○ Capable of detecting loop-based basic blocks

2

Mapping loop-based basic blocks onto accelerators

● How can we efficiently map loop-based BBs onto accelerators?

● Two possible optimizations:
○ Map multiple iterations instead of just one (published in FPT’ 21)
○ Detect memory accesses that can be implemented as streams (work in progress)

3

Mapping multiple iterations of a basic block
● Loop-based basic blocks are repeated, sequentially, on the trace

● Can we capture N iterations at once, instead of just one?

● Parallel with the loop unrolling performed over source code

● Potential to parallelize iteration-independent operations, and improve ILP
of inter and intra-iteration dependent operations

4

From instructions to a dataflow graph
● Segments converted onto a data flow

graph (DFG)
○ Data stored in register nodes and modified by

operation nodes

● Further simplified into a dependence
graph

○ Branching operations removed
○ Intermediate registers are removed
○ In/outs are removed

5

Scheduling onto accelerators
● Our accelerator model for this optimization is a

Coarse-Grained Loop Accelerator
○ A 1D CGRA with a fully connected crossbar
○ Two types of functional units: ALUs and memory ports
○ Fully access to the system memory
○ Previously validated on-chip

● We use list scheduling to map the dependency
graph onto the accelerator:

○ Priority is defined by the latency-adjusted longest path
from a node to a graph sink

○ Number of successors used as a tie-breaking heuristic

6

N. M. C. Paulino, J. C. Ferreira and J. M. P. Cardoso, "Generation of
Customized Accelerators for Loop Pipelining of Binary Instruction
Traces," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 1, pp. 21-34, Jan. 2017, doi:
10.1109/TVLSI.2016.2573640.

Dealing with constraints
● How to deal with any possible memory dependencies between memory

accesses? (e.g. Read-after-Write, Write-after-Read, Write-after-Write)
○ We can assume that memory accesses alias by adding extra edges to the dependency

graph to enforce a worst-case scenario

● How do we know if the iterations we’re repeating should actually execute?
○ E.g., if we choose to offload 5 repeated iterations on a loop with 1004 iterations, we’d call

the accelerator 200 times and execute the remaining 4 iterations on the CPU
○ Easy to establish guards for loops with a fixed number of iterations

7

Experimental evaluation - setup
● 19 benchmarks from the PolyBench benchmark suite

● Compiled for the MicroBlaze architecture using floating-point datatypes

● Three-fold analysis:
○ Repetition values up to 5 for all benchmarks
○ Different CGRA functional units configurations (number of memory ports and ALUs)
○ Scheduling the basic blocks with and without memory overlaps

● Results measured in terms of average speedup achieved by an iteration vs. the CPU version

8

Experimental evaluation - detected basic blocks
● 51 basic blocks found

● Average of ~12
instructions/block

● 3:1 ratio between
arithmetic and
memory operations

9

Experimental evaluation – average speedups

10

Concluding Remarks
● The developed optimization using repeated basic blocks produced interesting results:

○ Even the most pessimistic version had clear advantages over a CPU execution
○ Not considering memory overlap increases speedups up to 40% (5.1x vs 2.9x)
○ CGRA adaptability and configurability are of paramount importance
○ Speedups generally increase with the number of repetitions, as long as the CGRA has enough resources

● Memory overlapping impose the biggest barriers towards better and more robust
optimizations

● Future work: employ memory disambiguation techniques to find solutions within the
upper and lower bounds defined by this study, and explore the interplay with loop
pipelining

11

