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Mapping loop-based basic blocks onto accelerators
● Detection on the Binary Translation Framework (BTF)

○ Capable of detecting loop-based basic blocks
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Mapping loop-based basic blocks onto accelerators

● How can we efficiently map loop-based BBs onto accelerators?

● Two possible optimizations:
○ Map multiple iterations instead of just one (published in FPT’ 21)
○ Detect memory accesses that can be implemented as streams (work in progress)
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Mapping multiple iterations of a basic block
● Loop-based basic blocks are repeated, sequentially, on the trace

● Can we capture N iterations at once, instead of just one?

● Parallel with the loop unrolling performed over source code

● Potential to parallelize iteration-independent operations, and improve ILP 
of inter and intra-iteration dependent operations
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From instructions to a dataflow graph
● Segments converted onto a data flow 

graph (DFG)
○ Data stored in register nodes and modified by 

operation nodes

● Further simplified into a dependence 
graph

○ Branching operations removed
○ Intermediate registers are removed
○ In/outs are removed
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Scheduling onto accelerators
● Our accelerator model for this optimization is a 

Coarse-Grained Loop Accelerator
○ A 1D CGRA with a fully connected crossbar
○ Two types of functional units: ALUs and memory ports
○ Fully access to the system memory
○ Previously validated on-chip

● We use list scheduling to map the dependency 
graph onto the accelerator:

○ Priority is defined by the latency-adjusted longest path 
from a node to a graph sink

○ Number of successors used as a tie-breaking heuristic
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Dealing with constraints
● How to deal with any possible memory dependencies between memory 

accesses? (e.g. Read-after-Write, Write-after-Read, Write-after-Write)
○ We can assume that memory accesses alias by adding extra edges to the dependency 

graph to enforce a worst-case scenario

● How do we know if the iterations we’re repeating should actually execute?
○ E.g., if we choose to offload 5 repeated iterations on a loop with 1004 iterations, we’d call 

the accelerator 200 times and execute the remaining 4 iterations on the CPU
○ Easy to establish guards for loops with a fixed number of iterations
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Experimental evaluation - setup
● 19 benchmarks from the PolyBench benchmark suite

● Compiled for the MicroBlaze architecture using floating-point datatypes

● Three-fold analysis:
○ Repetition values up to 5 for all benchmarks
○ Different CGRA functional units configurations (number of memory ports and ALUs)
○ Scheduling the basic blocks with and without memory overlaps

● Results measured in terms of average speedup achieved by an iteration vs. the CPU version
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Experimental evaluation - detected basic blocks
● 51 basic blocks found

● Average of ~12 
instructions/block

● 3:1 ratio between 
arithmetic and 
memory operations
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Experimental evaluation – average speedups
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Concluding Remarks
● The developed optimization using repeated basic blocks produced interesting results:

○ Even the most pessimistic version had clear advantages over a CPU execution
○ Not considering memory overlap increases speedups up to 40% (5.1x vs 2.9x)
○ CGRA adaptability and configurability are of paramount importance
○ Speedups generally increase with the number of repetitions, as long as the CGRA has enough resources

● Memory overlapping impose the biggest barriers towards better and more robust 
optimizations

● Future work:  employ memory disambiguation techniques to find solutions within the 
upper and lower bounds defined by this study, and explore the interplay with loop 
pipelining
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