
P5.Transparent 
CPU-FPGA Control 

Flow Transfer in HPC

Daniel Granhão
CTM

INESC TEC



Context & Motivation
● HPC has become a huge industry 

○ Key metric: Performance / Cost of Operation

● Heterogeneous platforms can help!
○ Integrating FPGAs can provide big efficiency boosts

● Problem: employing FPGAs requires expensive and complex 
application adaptation

○ An automatic alternative is highly desirable



Previous Work
● There are several proposals for 

embedded platforms, but approaches 
are not transferable 

● For HPC: Shared Library Interposing
○ Using LD_PRELOAD to load alternative shared 

libraries that move execution to accelerators
○ Problem: can only accelerate hot spots inside 

shared libraries



Proposed Mechanism
● Transfer the control flow by taking advantage of the ptrace system call

○ Linux system call that allows a process (the tracer) to control another (the tracee)
○ The tracer can change registers and memory of the tracee at will

● Idea: Introduce a new manager process that uses ptrace to track the 
execution of the target and makes the control flow move to an accelerator 
when a hot spot is reached



Manager Steps



Code Injection
Can be made in two steps:

1. Compile transfer code into a shared library
2. Load shared library into target process using ptrace as depicted in the image



Breakpoint Configuration
● Identical to a debugger’s 

operation



Injected Routine Execution
● Inject a call instruction 

using ptrace()
● But where to? 
● Harder than it seems…

○ ASLR (Address Space Layout 
Randomization) randomizes 
location where shared 
libraries are loaded



Evaluation
Comparing with Shared Library Interposing:

● Advantages:
○ Allows the transparent control flow transfer of hot spots that are not contained inside 

shared library functions

● Disadvantages:
○ Higher hardware dependency
○ Debugging hindered (despite being likely the target application is not in need of 

debugging)
○ Likely to introduce overheads



Proof of Concept Implementation



Accelerator Requisites
● Must provide an interface in the form of a collection of CSRs
● Must itself access the main memory to access variable sized input data
● Must itself write to the main memory any variable sized output data
● Must use virtual addressing
➔ Intel’s Xeon+FPGA HPC platform



Experimental Results
● Proof of concept implementation was applied to:

○ AES 256 CTR Mode Encryption
○ Matrix Multiplication

● Comparing with Shared Library Interposing:
○ Two types of overheads introduced:

■ An initial transfer code injection delay (not very important)
■ A per-control flow transfer adicional delay (highly relevant)

Average Initial injection delay Average Per-transfer delay

AES 256 CTR Mode Encryption 20 ms 1.2 ms

Matrix Multiplication 38 ms 0.7 ms



Conclusions
● ptrace can be used to transparently transfer the control flow of a process 

to an accelerator
○ Hot spots do not have to be inside shared library functions
○ Although not explored in the proof of concept implementation, the approach 

should be applicable to other types of hotspots (such as “megablocks”)

● The price to pay…
○ Higher dependency on hardware architecture
○ A variable overhead is introduced in each control flow transfer


