P3.

(PU-
Flow T

ransparent
-PGA Control

ansfer in HPC

Daniel Granhdo

(TM
INESCTEC

Context & Mativation

e HPC has become a huge industry
o Key metric: Performance / Cost of Operation

e Heterogeneous platforms can help!
o Integrating FPGAs can provide big efficiency boosts

e Problem: employing FPGAs requires expensive and complex

application adaptation
o An automatic alternative is highly desirable

\4

CPU

Accelerator {

| Program | L1 [
Profiling Accelerator Configuration : P :

Previous Work

e There are several proposals for —
embedded platforms, but approaches ey L [[
are not transferable T =
e For HPC: Shared Library Interposing - ’
Multi-Core
o Using LD_PRELOAD to load alternative shared (Host)
libraries that move execution to accelerators | |
o Problem: can only accelerate hot spots inside Sjb . Eb::! ePU %C,earspeed
shared libraries

From: “Using Shared Library Interposing for
Transparent Application Acceleration in
Systems with Heterogeneous Hardware Accelerators”
by Tobias Beisel, Manuel Niekamp and Christian
Plessl

Proposed Mechanism

e Transfer the control flow by taking advantage of the ptrace system call

o Linux system call that allows a process (the tracer) to control another (the tracee)
o The tracer can change registers and memory of the tracee at will

e Idea: Introduce a new manager process that uses ptrace to track the
execution of the target and makes the control flow move to an accelerator
when a hot spot is reached

Manager ptrace _| Target
Process "1 Process

Manager Steps

breakpoint reached—w
Call code injected in
target process

J

Inject code Set breakpoints breakpoint reache

Code Injection

Can be made in two steps:

1. Compile transfer code into a shared library
2. Load shared library into target process using ptrace as depicted in the image

| 2 3 4
rip rip rip
dlopen rip dlopen >
Transfer code Transfer code

Breakpoint Configuration
e Identical to a debugger’s - -
operation oxda ox3a
0x2v 0x2v
i Oxe2 e Oxcc
0xb1 Oxb1
5=)
0x12 ‘ | 0x12
0x42 0x42
i 0x13 0x13
0x83 0x83
0x85 0x85

Injected Routine Execution

® |nJeCt a Ca” InStrUCtlon Manager process x5 Target process 6
using ptrace()
e Butwhere to? .
e Harder than it seems... Offsei Shered lbrary
with transfer code
o ASLR (Address Space Layout tansfor() ——>""" .
Randomization) randomizes g
. Offset Shared library Can be learned
location where shared Pl isioronie o8 from process
transfer() > /proc/<p|d>/maps
libraries are loaded 0x620 file

‘& Different address N

spaces

Evaluation

Comparing with Shared Library Interposing:

e Advantages:

o Allows the transparent control flow transfer of hot spots that are not contained inside
shared library functions

e Disadvantages:
o Higher hardware dependency
o Debugging hindered (despite being likely the target application is not in need of
debugging)
o Likely to introduce overheads

Proof of Concept Implementation

description.json configuration compilation

Manager code Manager

manager

Tracing & Profiling

Mechanism

complete_desc.json

used by

Address extraction

Y

using objdump

Parameter

Description

functionAddr
functionCalls
targetName
functionName
functionArgs
accLibString
accLibPath
accHeaderPath
accFunctionName

Address of the hot spot function

Array containing addresses where the hot spot function is called
Name of the target’s process executable

Name of the hot spot function to be accelerated

Array describing each one of the hot spot function arguments
Name of the shared library containing the transfer code

Path to the shared library containing the transfer code

Path to the header file of the shared library

Name of the function containing the transfer code

Accelerator Requisites

Must provide an interface in the form of a collection of CSRs

Must itself access the main memory to access variable sized input data
Must itself write to the main memory any variable sized output data
Must use virtual addressing

Intel’'s Xeon+FPGA HPC platform

*Q.Q.

DDR4
x4

v

<«~——QPI—>

Xeon E5-2600 v4 |(€«—PCle 3.0 x8» Arria 10 FPGA

<—PCle 3.0 x8»|

A A A4
vV.VY

A p
QPI PCle 3.0 x24 HSSI
v v v

Experimental Results

e Proof of concept implementation was applied to:

o AES 256 CTR Mode Encryption
o Matrix Multiplication

e Comparing with Shared Library Interposing:
o Two types of overheads introduced:

m Aninitial transfer code injection delay (not very important)
m A per-control flow transfer adicional delay (highly relevant)
Average Initial injection delay = Average Per-transfer delay

AES 256 CTR Mode Encryption 20 ms 1.2 ms

Matrix Multiplication 38 ms 0.7 ms

Conclusions

e ptrace can be used to transparently transfer the control flow of a process

to an accelerator

o Hot spots do not have to be inside shared library functions
o Although not explored in the proof of concept implementation, the approach
should be applicable to other types of hotspots (such as “megablocks”)

e The price to pay...
o Higher dependency on hardware architecture
o Avariable overhead is introduced in each control flow transfer

