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Binary Translation Framework
● Our own previous work: 

○ Targeted only MicroBlaze G
○ Generated/supported only one specific type of pipelined loop accelerators 
○ Functional (+), but limited (-)

How to explore hardware generation from trace/post-compile information for 
more ISAs, and targeting more/different accelerator/core designs? 

The purpose of the Binary Translation Stack is to implement this flow.



Papers and Demos
● IEEE Micro Special Issue on FPGAs in Computing

○ N. Paulino, J. Bispo, J. C. Ferreira and J. M. P. Cardoso, "A Binary Translation Framework for Automated Hardware 
Generation," in IEEE Micro, vol. 41, no. 4, pp. 15-23, 1 July-Aug. 2021, doi: 10.1109/MM.2021.3088670.

● FPT’2021
○ T. Santos, N. Paulino, J. Bispo, J. M. P. Cardoso and J. C. Ferreira, "On the Performance Effect of Loop Trace Window Size on 

Scheduling for Configurable Coarse Grain Loop Accelerators," 2021 Intl. Conf. on FPT, 2021, pp. 1-4, doi: 
10.1109/ICFPT52863.2021.9609868.

● FPL’2020
○ N. Paulino, J. C. Ferreira, J. Bispo and J. M. P. Cardoso, "Executing ARMv8 Loop Traces on Reconfigurable Accelerator via 

Binary Translation Framework," 2020 30th Intl. Conf. on FPL, 2020, pp. 367-367, doi: 10.1109/FPL50879.2020.00072.

● DATE’2020
○ N. Paulino, J. C. Ferreira, J. M. P. Cardoso, J. T. de Sousa, “Power Efficiency and Performance for Embedded and HPC 

Systems with Custom CGRAs”, Design, Automation & Test In Europe, Demo Booth, 2020, doi: 
http://dx.doi.org/10.13140/RG.2.2.14545.97128
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https://ieeexplore.ieee.org/document/9453149
https://ieeexplore.ieee.org/document/9609868
https://ieeexplore.ieee.org/document/9221508
http://dx.doi.org/10.13140/RG.2.2.14545.97128


Posters
● DATE’2020

○ Holistic view of the 
project

● FPL’2020
○ Specifically on the 

Binary Translation 
aspect

Both include video 
demos
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Framework Stack

● Implemented in Java
● Starts by analysis of ELF file, or trace dump
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● Produces CDFGs of repetitive patterns
● Outputs arbitrary Verilog (generated programmatically)



Instruction Stream Parsing
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● Types of instruction streams
○ Static analysis (via objdump)
○ Trace analysis (via QEMU + GDB)

● ISA Decoders
○ MicroBlaze (32 bit)
○ ARMv8
○ RISC-V (32IMAF)

● Requires QEMU and GNU utils for all 
supported ISAs…
○ (Some effort… including bug reports to 

Sourceware)

Phase 1 - Decoding



Instruction Stream Parsing
● Standardized properties per ISA

○ “InstructionProperties” interface
○ Encoding
○ Binary format
○ Generic type classifier for later stages

● Lists of parsers for formats of an ISA
○ Easy to read and specify
○ Named parsed fields, literal fields, and D/C
○ Priority ordered
○ Support predicates; useful for 

sub-encodings and particular corner cases
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Instruction Stream Parsing
● But what does an instruction do?

○ Parsing the fields, field values, and 
mnemonic (e.g. add) is insufficient 

● Solution: ISA-independent behaviour 
specification
○ In-house g4 syntax processed by ANTLR4
○ “Pseudo-Instruction”
○ Specifies the actual interaction between 

fields of any instruction of any ISA
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pseudo-code → 
parse tree → 

AST



Instruction Stream Parsing
● Quick look at a g4 

syntax file (partial)

● Java tokenizer and 
parser are 
generated by 
ANTLR4 

● Transforming the 
parse tree into our 
own AST is done by 
our code
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Binary Segment Detection
● Idea: detect repetitive sequences of 

instructions
○ → generate HDL to exploit parallelism

● Types of sequences
○ Frequent sequences
○ Basic Blocks
○ Megablocks (from previous work)
○ Other types? (e.g., nested loops or merged 

megablock paths)

● Sequences can be static or trace based
● How do we defined that two sequences 

are equal?
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Phase 2 - Detection



Binary Segment Detection
● Detection is performed over a 

candidate window of max size
○ Using a hash to define equality
○ Changing the hash simplifies equality 

condition and re-uses detection code

● Example for frequent static 
sequences
○ Same sequence can be “different” if 

registers different but CDFG would be 
the same. Solution?
■ Abstract the registers
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fmul r<a>, r<a>, r<b>
fadd r<c>, r<c>, r<d>
sw   r<c>, r<e>, r<f>

2 sequences at 2 different addresses implement the 
same dataflow despite different registers



Binary Segment Detection
● Part of the FPL2020 demo (6:40m to end demonstrates detection)
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https://docs.google.com/file/d/1FZCcs7pfzxmx2sJFgN9Ya1FfbvE8Z1dj/preview


Binary Segment Detection
● From IEEE Micro paper
● 3 ISAs and 13 kernels 

from Polybench
● 2 cases:

○ static acyclic sequences of 
sizes 2 to 6 (this slide)

○ trace basic blocks (next 
slide)

● On avg., per sequence:
○ loads → 30-50%
○ stores → 10-50%
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Detected static frequent sequences for the supported ISAs



Graph Generation
● Trace basic blocks

○ Fully simulated the 13 
kernels for all 2 ISAs

○ Searched for basic blocks 
sizes 4 to 50

○ Collected average metrics

● CDFG generation
○ Analysing when registers are 

last written
○ Identifying live-ins, live-outs
○ II is computed based on 

longest backwards 
connection

(RISC-V execution in QEMU failed with 
floating-point kernels… since solved!)
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Summary metrics for the graphs of detected hot basic blocks



Hardware Generation
● Analyse CDFGs of inst. sequences

○ Process level by level, top to bottom
○ Perform rudimentary SSA
○ Analyse AST of each node (i.e. inst.)
○ This example simply emits 

combinatory blocks per CDFG level
■ Single cycle module

● Recent
○ Generation of Verilog changed 

significantly from the version used to 
produce this output (see session P8)
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Hardware Generation
● On-going

○ Graph analysis of memory access patterns and AGU extraxtion
○ Integration with synthesis and simulation backends (via TCL or others)
○ Better programmatic Verilog generation via internal DSL

● Future aspects to consider in automated hardware generation
○ Memory Accesses (i.e., patterns, partitioning, coalescing, custom cache systems etc)
○ Implementation of branches / predication / multiple-paths
○ Multiple Configurations (methods of reconfigurability and granularity)
○ Fully custom HDL (compliant to some interfaces) vs. Template specialization

■ i.e., low control vs requiring some architecture specific “compiler” (e.g., for CGRAs)
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Conclusion
● A “sandbox” tool for exploring

○ Different IRs
○ Optimizations of IRs
○ Methods for workload representation
○ Different target hardware

■ by functional simulation
■ by emitting to RTL

● Hoping to focus on RISC-V based 
architectures in future
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