P3.An Overview on
Binary Translation

Nuno Paulino
(TM
INESCTEC

Overview

e Title: Improving Performance and Energy Consumption in Embedded Systems via Binary Acceleration:
A Survey (https.//dol.org/10.1145/3369764)

Journal: ACM Computing Surveys
o Q1 in Computer Science
o Impact Factor: 6.13 (@2018)
o Approx. 10-20 citations per paper

e 35 Page survey paper
o Submitted: 11 Feb. 2019 — R1: 30 Mar. 2019 — R2: 3 Sep. 2019 — Accepted: 2 Oct. 2019!

e Project: PEPCC (Power Efficiency and Performance for Embedded and HPC Systems with Custom
CGRAs)

e Keywords: Surveys and overviews, Hardware Accelerators
o Binary acceleration, instruction traces, (automated) hardware synthesis

Specific focus: dev. of tools, toolflow, and methodologies, for HW/SW design

https://doi.org/10.1145/3369764

Rationale

e After single-row accelerator and MicroBlaze binary translation (session

P1), we wanted
o Multiple instruction set support
o Detect / extract greater code blocks
m Multiple-paths
m Nested Loops
o Explore CDFG transformations / optimizations
m Splitting graphs
m Extracting address generation patterns (session P7)
m Node fusion
o Explore different target architectures and scheduling techniques

e — Survey to characterize general panorama

30 Years of CMOS Processor Technology

e Dennard Scaling
o Scale down
o Voltage down
o MHzup
o Heatdissipation — constant

e Too small — current leakage!
e 2005 — End of Single-core scaling

e How far can Multi-Core go?

o Dark Silicon
o Amdahl's Law

15 Years of incremental improvements...

107 Single-Core Era |

10°

103

W a el ulti-Core Era

|
|
o

10!

'
1071

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

>

Year

—+— Clock Frequency (Mhz) —e— Transistor Count (Thousands)
—— Number of Cores —4— Thermal Design Power (W)

Fig. 1. Trends for desktop and server grade processors throughout the last 50 years, built from 950 data points
from CPU DB [23] and Intel’s and AMD’s product pages

What's Left to Explore?

e Single-core workloads aren’t nearly as optimized as they could be!

o “(..)alarge amount of ILP that is not being exploited within a 128 to 512 instruction distance.”
o “Compared to real machines as much as 929x more ILP is available.”

o “We found the upper bound on ILP averaged around 200 instructions/cycle (...)”
m fatehietal, “ILP and TLP in shared memory applications: A limit study”, 2014, 23rd International Conference on
Parallel Architecture and Compilation Techniques (PACT), Edmonton, AB, 2014, pp. 113-125.

e This potential is not fully explored by typical techniques

o e.g., VLIWs, Superscalar processors, threading, software pipelining, etc

Ergo, application-/workload-specific compute architectures!
How?

Binary Translation?

e |tis atype of re-compilation:
o Binary code from one ISA — same ISA + transformations OR another target ISA

e Transforming static code
o Examples: ISA compatibility without re-compilation, instrumentation

e Transforming executing code (i.e. traces)
o Examples:Java VM, Valgrind, Virtual Machines

This survey: translate binary to hardware descriptions/configurations

Further reading: Wenzl et al., 2019. From Hack to Elaborate Technique - A Survey on Binary Rewriting. ACM Comput. Surv.
52, 3, Article 49 (June 2019), 37 pages.

Binary Translation for Acceleration

7 B 1
CPU
IR (e.g. : f (1
—
CDFG) —1 Translation Y
0 Data
| [Accelerator
2 N , Memory
| ; Traces |
.| Execution : | K y
,) .1 /Profiling |
.| /Simulation Inf |
S -
Binary Translation Architecture
Legend: | Product | (Process) | Module |

Fig. 2. High-level generic representation of binary translation flow into custom hardware (a - flows based on
complied binary, b - flows based on binary traces)

Binary Segments

e Binary instruction lists

e Detected from

(@]

(@]

Static binary
Instruction traces

e 4 Major types

o O O O

Frequent sequences
Basic Blocks

Acyclic blocks

Cyclic blocks

Transform sequence — Exploit ILP!

1) Frequent T

instruction |
sequence |
branch
————— ' ¢ 2) Basic Block
branch <— Ended by
..... forward or
..... backward
..... branch
R
\— instb
© | inst c

3) Acyclic block sequence (e.g., Superblock)

Forward

Untaken
branch

Ended by
branch,
based on
criteria

4) Loop trace (e.g., Megablock, or Superblock subset)

- return =i

S
y
(i) Return
.section: Entry
----- point

Loops or
ends on

"~ backwards
branch

Fig. 3. Four types of binary segments than can be extracted from sequences of binary instructions

Binary Segments - Detection

e Online Detection

CPU
O + More tra nspa rent S g = I-Mem Source
. i Trace Cache, .
o +Profile data
o - Restricted 2) 1) 3) Compiler
O - Short Segments' Observe Observe
o - Difficult translation fveonlion Binary _—
Compile-time Bi
; nary
Detection
. . Analysis 2/ 3\
e Offline Detection A= J
H 1nar pp ication
o+ Unrestricted \ <
o+ More information
+/-C il int ti Detected Binary Detected Segments

o - Ompl erin egra 1on Segments (+ Instrumentation) (+ Additional Outputs)
o - Lesstransparent Tvoes of Online Detecti Tvoes of Offline Detecti

. tect tect
o _ More toolS requ|red (?) ypes o) nline Detection ypes o me Detection

Legend: Product | (Process) I Module l

Fig. 4. Different methods for detection of binary segments

Binary Segments - Translation

Extract ILP from Segments — CDFG

Generate Accelerator Control
o Assign operations to Accelerator
Functional Units (FUs)
o Generation of Custom Instructions
Scheduling

Generate Accelerator Hardware
o | None: pre-designed
o | Template parameterization
o | Full HDL generation

+Specialization

Generation of Control i

! I
! I
' [Generate Binary } Program
~| Custom |+| Modifi- Binary :
: \Instructions cations :]
| ! T
|
! Config. | | Ppopulate CPU
,——1 Scheduling/Compilation Words/ — p———
i Instructions | |
|
D e e e et st
Segment(s) — [
Ecate) e ST EEs e :_L_oga_l M_erp._} Data
; Generation of Hardware | Acéelerator Memory
' | Generate } P
| wHDL [— l [J
A/ |
1 Synthesis P —_—
| [Module | Instantiate
| | Parametrize ; i
|| Template ‘
| i
Translation Architecture
Legend: | Product | (Process) I Module I

Fig. 5. Processes that may be involved in a translation step

10

Overview of State-of-the-Art Approaches

e Whatdid | review?
o +/-30 papers that rely on some kind of translation of transformation of code to hardware
o | created taxonomies to classify the binary translation, and accelerator architectures:

Features of Binary Translation Process Features of Accelerator Architecture
e Type of Segment e Acc./Host Interface
e Segment Detection e Arrangement of Functional Units
e Segment Translation e FU Interconnections
e Application Binary Modification e Supported FU Operations
e Type of Acc. Architecture e Memory Access Capabilities

e [xecution Model

11

Accelerator Architectures - System Level View

Pipeline Register IF
integration Bile ID
tight couplin I —
(tig Mp{ [Accelerator| | EX |
B
...;; \ /
w o v
SEhY MEM
=i WB | CPU

(a) Tight coupling into host pro-

cessor pipeline

Shared l

Local RAM.

CPU : ; Accelerator
: Memory ;
Peripheral Bus)
3 y
N T
Other External Internal
Peripherals RAM RAM

(b) Loose coupling via: 1) point-to- point connection;
or 2) bus connection

Peripheral
connection
(loose coupling)

Fig. 6. Different interfaces between host processor and accelerator (optional components in dotted lines)

Two design types:
o Mesh-based
o Row-based

Mesh Designs
o Aptforloop acceleration
o Homogeneous
o (More) Scalable
o Peripheral-based

Row Designs
o Apt forinstruction compression
Multi- or Single-Row
(More) Heterogeneous
Difficult to scale
Data directionality

O O O O

Configuration Memory

!

FU Array

FUO FU1 FU2 FU3

R R

FU4 FU5 FU6 FU7

R

FU8 FU9 FU1 FU11

AIowdy UTR]
T
Y
PPNy AIOWAN [8007]
{

r 4 1

[FU12 FUL3 FU14 IFUL5

(a) Mesh arrangement (adapted from [51])

Accelerator Architectures - Structure & Function

¢ O Y
MEEEIIE
[L3] [L3] [L3] [L3]

L5

Ul

H

=

ri
H
>
E
>

(Lé6) (L6]

(b) Row-based
(adapted from [19])

|

arrangement

Fig. 7. Two Functional Unit arrangements and interconnections for accelerators

13

summary - Overview of Binary Translation

Segment Type Binary Translation Accelerator Type

Binary Modification

Binary Detection

@ Static Design
@ Template Based
@ Full Custom

@ Compile-Time
@ Post-Compile @ Runtime

@ static @ Acyclic
@ Cyclic

@ Static Analysis @ Compile-Time
@ Offline Profling @ Post-Compile
@ Online Profiling @ Runtime/None

14

summary - Overview of Accelerator Architectures

Structure Supported Operations Memory Support

@ Mesh @ Multi-Row @ Limited Int./Logic @ Full Integer @ None @ 1Sequential Access
® Ssingle-Row @ Full Custom ® +Fixed/FloatPt. @ +FullFloatPt. @ 1 Arbitrary/+1 Seq. 1 more

summary - Performance and Power Improvements

- 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 1) 12) 13) 14) 15)

Speedup 3.2% 1.9x 2.6X 2.2X 2.2X 1.1x 56x 12.0x 2.5% 9.4x 1.1x 2.0x 7.1% 3.0x 3.3x

Power

) 2.9x 1.3x 2.2% 1.7% 1.5x 3.9x 12.0x 8.3x 1.6X 7.1x 11.0x
Reduction

1) Warp; 2) ADEXOR; 3) DIM; 4) CCA; 5) DySE; 6) BERET; 7) CLA; 8) PLA; 9) PPA; 10) Paek et.al;
11) Chen et al,; 12) Ferreira et al,; 13) ASTRO; 14) Malazgirt et al.; 15) Rokicki et al.

Typical baselines/target systems:
e Single-thread, single-issue, bare-metal environments
e ARM, SPARC, Microblaze, MIPS based processors, VLIWs
o i.e, RISC architectures — simpler binary segment detection and translation

Competing with higher-end multi-core devices is unlikely, but
improvements are promising for power-constrained embedded systems

Conclusion

e Pros:

o Acceleration via analysis of instruction windows in compiled programs is demonstrated

o Acceleration without use of new programming models, APIs, source modifications, etc

o Potential for re-use of concept in emerging efforts heterogeneous hardware/software co-compilation
e (ons:

o Application to real cases (beyond prototypes)

o Support for multiple ISA; support for operating systems

o Integration into end-system

o Just-in-time translation (full transparency)
e We used this overview as a guide to start efforts on a Binary Translation Framework

e https://dl.acm.org/doi/10.1145/3369764

o It'strending! 99471304

https://dl.acm.org/doi/10.1145/3369764

