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Overview

e Title: Improving Performance and Energy Consumption in Embedded Systems via Binary Acceleration:
A Survey (https.//dol.org/10.1145/3369764)

Journal: ACM Computing Surveys
o Q1 in Computer Science
o Impact Factor: 6.13 (@2018)
o  Approx. 10-20 citations per paper

e 35 Page survey paper
o  Submitted: 11 Feb. 2019 — R1: 30 Mar. 2019 — R2: 3 Sep. 2019 — Accepted: 2 Oct. 2019!

e Project: PEPCC (Power Efficiency and Performance for Embedded and HPC Systems with Custom
CGRAs)

e Keywords: Surveys and overviews, Hardware Accelerators
o Binary acceleration, instruction traces, (automated) hardware synthesis

Specific focus: dev. of tools, toolflow, and methodologies, for HW/SW design


https://doi.org/10.1145/3369764

Rationale

e After single-row accelerator and MicroBlaze binary translation (session

P1), we wanted
o  Multiple instruction set support
o Detect / extract greater code blocks
m  Multiple-paths
m Nested Loops
o Explore CDFG transformations / optimizations
m Splitting graphs
m Extracting address generation patterns (session P7)
m  Node fusion
o Explore different target architectures and scheduling techniques

e — Survey to characterize general panorama



30 Years of CMOS Processor Technology

e Dennard Scaling
o  Scale down
o Voltage down
o  MHzup
o Heatdissipation — constant

e Too small — current leakage!
e 2005 — End of Single-core scaling

e How far can Multi-Core go?

o  Dark Silicon
o Amdahl's Law

15 Years of incremental improvements...
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Fig. 1. Trends for desktop and server grade processors throughout the last 50 years, built from 950 data points
from CPU DB [23] and Intel’s and AMD’s product pages




What's Left to Explore?

e Single-core workloads aren’t nearly as optimized as they could be!

o “(..)alarge amount of ILP that is not being exploited within a 128 to 512 instruction distance.”
o “Compared to real machines as much as 929x more ILP is available.”

o “We found the upper bound on ILP averaged around 200 instructions/cycle (...)”
m  fatehietal, “ILP and TLP in shared memory applications: A limit study”, 2014, 23rd International Conference on
Parallel Architecture and Compilation Techniques (PACT), Edmonton, AB, 2014, pp. 113-125.

e This potential is not fully explored by typical techniques

o e.g., VLIWs, Superscalar processors, threading, software pipelining, etc

Ergo, application-/workload-specific compute architectures!
How?



Binary Translation?

e |tis atype of re-compilation:
o Binary code from one ISA — same ISA + transformations OR another target ISA

e Transforming static code
o Examples: ISA compatibility without re-compilation, instrumentation

e Transforming executing code (i.e. traces)
o Examples:Java VM, Valgrind, Virtual Machines

This survey: translate binary to hardware descriptions/configurations

Further reading: Wenzl et al., 2019. From Hack to Elaborate Technique - A Survey on Binary Rewriting. ACM Comput. Surv.
52, 3, Article 49 (June 2019), 37 pages.



Binary Translation for Acceleration
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Fig. 2. High-level generic representation of binary translation flow into custom hardware (a - flows based on
complied binary, b - flows based on binary traces)



Binary Segments

e Binary instruction lists

e Detected from
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e 4 Major types

o O O O

Frequent sequences
Basic Blocks

Acyclic blocks

Cyclic blocks

Transform sequence — Exploit ILP!

1) Frequent T

instruction |
sequence |
branch
————— ' ¢ 2) Basic Block
branch <— Ended by
..... forward or
..... backward
..... branch
R
\— instb
© | inst c

3) Acyclic block sequence (e.g., Superblock)

Forward

Untaken
branch

Ended by
branch,
based on
criteria

4) Loop trace (e.g., Megablock, or Superblock subset)

- return =i

S
y
(i) Return
.section: Entry
----- point

Loops or
ends on

"~ backwards
branch

Fig. 3. Four types of binary segments than can be extracted from sequences of binary instructions




Binary Segments - Detection

e Online Detection

CPU
O + More tra nspa rent S g = I-Mem Source
. i Trace Cache, .
o +Profile data
o - Restricted 2) 1) 3) Compiler
O - Short Segments' Observe Observe
o - Difficult translation fveonlion Binary _—
Compile-time Bi
; nary
Detection
. . Analysis 2/ 3\
e Offline Detection A= J
H 1nar pp ication
o+ Unrestricted \ <
o+ More information
+/-C il int ti Detected Binary Detected Segments

o - Ompl erin egra 1on Segments (+ Instrumentation) (+ Additional Outputs)
o - Lesstransparent Tvoes of Online Detecti Tvoes of Offline Detecti

. tect tect
o _ More toolS requ|red (?) ypes o) nline Detection ypes o me Detection

Legend: Product | ( Process ) I Module l

Fig. 4. Different methods for detection of binary segments




Binary Segments - Translation

Extract ILP from Segments — CDFG

Generate Accelerator Control
o  Assign operations to Accelerator
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Fig. 5. Processes that may be involved in a translation step
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Overview of State-of-the-Art Approaches

e Whatdid | review?
o +/-30 papers that rely on some kind of translation of transformation of code to hardware
o | created taxonomies to classify the binary translation, and accelerator architectures:

Features of Binary Translation Process Features of Accelerator Architecture
e Type of Segment e Acc./Host Interface
e Segment Detection e Arrangement of Functional Units
e Segment Translation e FU Interconnections
e Application Binary Modification e Supported FU Operations
e Type of Acc. Architecture e Memory Access Capabilities

e [xecution Model
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Accelerator Architectures - System Level View

Pipeline Register IF
integration Bile ID
tight couplin I —
(tig Mp{ [Accelerator| | EX |
B
...;; \ /
w o v
SEhY MEM
=i WB | CPU

(a) Tight coupling into host pro-

cessor pipeline

Shared l

Local RAM.

CPU : ; Accelerator
: Memory ;
Peripheral Bus )
3 y
N T
Other External Internal
Peripherals RAM RAM

(b) Loose coupling via: 1) point-to- point connection;
or 2) bus connection

Peripheral
connection
(loose coupling)
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Two design types:
o Mesh-based
o  Row-based

Mesh Designs
o  Aptforloop acceleration
o Homogeneous
o (More) Scalable
o  Peripheral-based

Row Designs
o Apt forinstruction compression
Multi- or Single-Row
(More) Heterogeneous
Difficult to scale
Data directionality
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(a) Mesh arrangement (adapted from [51])

Accelerator Architectures - Structure & Function
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Fig. 7. Two Functional Unit arrangements and interconnections for accelerators
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summary - Overview of Binary Translation

Segment Type Binary Translation Accelerator Type

Binary Modification

Binary Detection

@ Static Design
@ Template Based
@ Full Custom

@ Compile-Time
@ Post-Compile @ Runtime

@ static @ Acyclic
@ Cyclic

@ Static Analysis @ Compile-Time
@ Offline Profling @ Post-Compile
@ Online Profiling @ Runtime/None
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summary - Overview of Accelerator Architectures

Structure Supported Operations Memory Support

@ Mesh @ Multi-Row @ Limited Int./Logic @ Full Integer @ None @ 1Sequential Access
® Ssingle-Row @ Full Custom ® +Fixed/FloatPt. @ +FullFloatPt. @ 1 Arbitrary/+1 Seq. 1 more




summary - Performance and Power Improvements

- 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 1) 12) 13) 14) 15)

Speedup 3.2% 1.9x 2.6X 2.2X 2.2X 1.1x 56x  12.0x 2.5% 9.4x 1.1x 2.0x 7.1% 3.0x 3.3x

Power

) 2.9x 1.3x 2.2% 1.7% 1.5x 3.9x 12.0x 8.3x 1.6X 7.1x  11.0x
Reduction

1) Warp; 2) ADEXOR; 3) DIM; 4) CCA; 5) DySE; 6) BERET; 7) CLA; 8) PLA; 9) PPA; 10) Paek et.al;
11) Chen et al,; 12) Ferreira et al,; 13) ASTRO; 14) Malazgirt et al.; 15) Rokicki et al.

Typical baselines/target systems:
e Single-thread, single-issue, bare-metal environments
e ARM, SPARC, Microblaze, MIPS based processors, VLIWs
o i.e, RISC architectures — simpler binary segment detection and translation

Competing with higher-end multi-core devices is unlikely, but
improvements are promising for power-constrained embedded systems



Conclusion

e Pros:

o Acceleration via analysis of instruction windows in compiled programs is demonstrated

o  Acceleration without use of new programming models, APIs, source modifications, etc

o  Potential for re-use of concept in emerging efforts heterogeneous hardware/software co-compilation
e (ons:

o  Application to real cases (beyond prototypes)

o  Support for multiple ISA; support for operating systems

o Integration into end-system

o Just-in-time translation (full transparency)
e We used this overview as a guide to start efforts on a Binary Translation Framework

e https://dl.acm.org/doi/10.1145/3369764

o It'strending! 99471304



https://dl.acm.org/doi/10.1145/3369764

