
P2.K-means on 
FPGA via OpenCL

Nuno Paulino
CTM

INESC TEC



Overview
● Title: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets 

(https://ieeexplore.ieee.org/document/9170625)

● Journal: IEEE Access
○ Q1 in Computer Science
○ Impact Factor: 3.37 (@2020)
○ Approx. 6 citations per paper

● 21 Page paper
○ Submitted: 28 Jul. 2020 → Accepted: 2 Aug. 2020!

● Project: PEPCC (Power Efficiency and Performance for Embedded and HPC Systems with Custom 
CGRAs)

● Keywords: OpenCL, k-means, clustering, FPGA, hardware accelerator, HLS

2

https://ieeexplore.ieee.org/document/9170625


Objectives
● Study a use case of HLS for FPGAs using OpenCL

● Outperform a sequential CPU execution of k-means
○ When executing k-means as C on CPU
○ When executing k-means as OpenCL kernel on CPU

● Compare runtime, power consumption, and power/performance tradeoff

3



k-means
● From a given set of initial 

cluster centroids:
a. for each point, compute distance 

to all centroids
b. assign each point to its closest 

centroid
c. compute new centroids based on 

point assignments
d. repeat from “a” until centroids 

converge (to a given tolerance)

● What is the best way to 
parallelize?

4



OpenCL Workgroup Computing Model

5

OpenCL Task-Kernel vs NDRange Kernel execution; for NDRange, workgroups 
have local size {1 < n < N, 1, 1}, where N = total # workitems



Baseline OpenCL
● Straight C → OpenCL conversion
● Purely sequential

○ In OpenCL, its classified as a 
“task-kernel”

○ Does not exploit workgroup model

● In this case
○ FPGA can explore deep hardware 

pipelining, where CPU cannot
○ One compute unit is instantiated 

on the FPGA

6



Optimizations

7

Different tested k-means kernel versions

Excerpt from v2
Removal of one inner w/ 8 iterations loop using a vector 

datatype of 8 elements

● In this case
○ Vectorization removes on inner loop
○ We confirmed that Intel’s OpenCL runtime performs auto-vectorization



Optimizations - v4/v5
● Workgroup model

○ “Normal” for OpenCL workloads
○ Nr workgroups determined by 

max. workgroup size and total nr. 
of workgroups

○ Workgroups → parallel

● In this case
○ CPU explores parallel work 

groups due to independent data
○ But FPGA can in addition explore 

pipelining of inner loops
○ Multiple compute units are 

instantiated on the FPGA

8

● Loop A moved to host side (not very paralellizable)
● Loop B bounds modified based on workgroup size



Optimizations - v5b
● Workgroup model with 

burst memory access 
inference
○ Loop E3 - Burst read points
○ Uses more device BRAM
○ Explicit local multi-port 

memories load up to TMPPTS 
points
■ TMPPTS could have been 

larger, up to device limits

9

Excerpt from v5b

(E2 - loop for burst reading into “tmpcentr” omitted)

(E3 - loop for burst writing into outputs omitted)



Experimental Setup
● Desktop CPU

○ Intel Core i7-6700K CPU (4 GHz)
○ Alpha Data ADM-PCIE-KU3

■ Kintex-6 XCKU060 FPGA
○ 32 GB RAM

● Execution
○ Host allocates input/output memory
○ Initial centroids computed using 

kmeans++
○ OpenCL API using Xilinx’s runtime for 

FPGA target, or Intel’s runtime for CPU

● Data
○ Generated synthetically by our own 

randomly correlated cluster generator

10

Alpha Data ADM-PCIE-KU3

Example dataset generated for D = 2, K = 4, N = 4k



Experimental Results – Performance on FPGA

Speedup of vectorization alone vs 
OpenCL baseline (v1), on FPGA

● i.e., task kernels w/ and w/o 
vectorization

11

Speedup of burst access over analogous 
versions (e.g., v5b over v5)

● Workgroup kernels w/ vectorization, w/ 
and w/o burst accesses



Experimental Results - Power on FPGA
● Power measured from 

post-route reports
○ For all code variants
○ For different numbers of 

compute units (where 
applicable)

● The best performing 
versions (v5b) only support 
up to 4 compute units
○ (Lack of FPGA resources)

12

Power consumption on FPGA for all cases and 
different numbers of CUs



Experimental Results - Summary FPGA vs CPU

13

FPGA Wins!

FPGA Wins!

● Power measured on CPU 
using RAPL interface

● Compared best performant 
code version per device, 
per problem size



Conclusions
● Mid-grade FPGA can outperform high-end CPU

○ Best version 725x faster than OpenCL baseline on FPGA
○ But not without significant code re-factoring, producing non-portable OpenCL code
○ CPU still faster in most cases, but best FPGA case outperforms CPU by 1.5x with 4.8x 

lesser power

● Four public artifacts
○ An Implementation of K-means written in C - 

■ https://codeocean.com/capsule/3208075/tree/v1
○ A Test Harness for Multiple OpenCL Implementations of the k-means Algorithm 

■ https://codeocean.com/capsule/2348736/tree/v1
○ A Generator of Randomly Correlated N-Dimentional Clusters 

■ 10.13140/RG.2.2.34866.43200
○ A Batch of Integer Datasets for Clustering Algorithms

■ 10.21227/smta-vv06

14

https://codeocean.com/capsule/3208075/tree/v1
https://codeocean.com/capsule/2348736/tree/v1
https://www.researchgate.net/publication/343255786_A_Generator_of_Randomly_Correlated_N-Dimentional_Clusters?channel=doi&linkId=5f20030da6fdcc9626b9f9b6&showFulltext=true
https://dx.doi.org/10.21227/smta-vv06

