PZ . K-means on
FPGA via Open(L

Nuno Paulino
(TM
INESCTEC

Overview

e Title: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets
(https.//ieeexplore.ieee.org/document/9170625)

e Journal: IEEE Access
o Q1 in Computer Science
o Impact Factor: 3.37 (@2020)
o Approx. 6 citations per paper

e 21 Page paper
o Submitted: 28 Jul. 2020 — Accepted: 2 Aug. 2020!

e Project: PEPCC (Power Efficiency and Performance for Embedded and HPC Systems with Custom
CGRAs)

e Keywords: OpenCL, k-means, clustering, FPGA, hardware accelerator, HLS

https://ieeexplore.ieee.org/document/9170625

Objectives

e Study a use case of HLS for FPGAs using OpenCL

e Outperform a sequential CPU execution of k-means

o When executing k-means as C on CPU
o When executing k-means as OpenCL kernel on CPU

e Compare runtime, power consumption, and power/performance tradeoff

k-means

e From a given set of initial
cluster centroids:

a.

b.

for each point, compute distance
to all centroids

assign each point to its closest
centroid

compute new centroids based on
point assignments

repeat from “a” until centroids
converge (to a given tolerance)

e What is the best way to
parallelize?

Algorithm 1 k-means Clustering

Data: Setof N = X, X», ..., Xy input data, where

X, = x1,Xx2,...,X4, threshold, K, D, N

Result: Set of K cluster centroids C = Cy, Ca, ..., Ck

and assignments of each datum X, to a cluster k

while error > threshold do

set old_error = error;
set error = 0;
forall the X,, in X do
set mindist = 0;
forall the Cy in C do

Compute distance dist of X, to Cy;

if dist < mindist then

mindist = dist,
L assign X, to cluster k;

rror = error + mindist;
orall the Cy in C do
Compute new Cy from points assigned to cluster
k

Q

—ry

OpenCL Workeroup Computing Model

FPGA (Task) i CPU = | FPGA (NDRange)
(Compute Unit #1) S " Application = ; Compute Unit #1
5~ CIC++ & =~11| 1 outof M
—_] o 0]
s .3 OCL Eeme] 3 .3 Workgroups
TS 0 S
1 Workgroup E S OCL API E 5 :
M O " — MO :
¢ OCL Runtime > [Compute Unit #(j
(N o e =

OpenCL Task-Kernel vs NDRange Kernel execution; for NDRange, workgroups
have local size {1 <n <N, 1, 1}, where N = total # workitems

kernel void slkmeansl (global uint xdata, int n, int m,

°
int k, int t, global uint =centr, global int =xlabels,
global uint »cl, global int =+counts, global int =xitcount)
{

ulong old_error, error = INT_MAX;
uint i = 0, j = 0; itcount [0] = O;
do { A
: . Jog-qFer T QEEOR, gxzor = 05 // save srvor
S h C O C S(i] =003 S elear iy counts
. tralg t — pen L ConverSIOn ggert(j[i]o, i m, j++) ('{[I::’rm+w]1 = 0;

}

e Purely Sequentlal for (int h = 0; h < n; h++) { B
o In OpenCL, its classified as a uint mindist = INT_MAX; C

for (i = 0; i < k; i++) {

utask_kerneln ‘fllong disg = 0, diff :)0; D

. or (j = 0; j < m; ++))

o Does not exploit workgroup model diff i_déif%}:aﬁégf = centrismt3];
}

if ((int) (dist/2) < (int) (mindist/2)) {
label s[h] = i;
mindist = dist;
}
}

e Inthis case poutstisbala il s 22 now-pur ans
&1 [HabelbiBiomi) [ot dbta ooy
o FPGA can explore deep hardware
pipelining, where CPU cannot

error += mindist; // update error

}

itcount [0] ++;

e : =0; 1 A // new centroids
o One compute unit is instantiated Ofor (3207 (& m & (comntaiil 5 0); 3++)
cent.r[nm+j] = cl[i*m+]J] / counts[i];
on the FPGA } while (abs((error - old_error)) > t);

Optimizations

Kernel | Description

vl Task-kernel; Baseline code

T 3 uint mindist = INT_MAX;
|v2/v3 Task-kernel; v1 + specialization for D =8 or D = 16 for(imi O?Si & ey A C
v4 | NDRange; Computat}or_l of.new centroids by host T ———————— b
v5 | NDRange; v4 + specialization for D = 8 uint dist =
v6 | NDRange; Only one point computed per work-group a2+ ‘el b ieal todeal Ao b guEm 8
d.s5 x d.s5 + d.s6 » d.s6 + d.s7 x d.s7;

vlb | vl + burst access optimization
v5b2 | V5 + burst access optimization, specialized for D = 2 | (.) // compare dist with mindist
v5b8 | v5 + burst access optimization, specialized for D = 8
v5b16 | v5 + burst access optimization, specialized for D = 16

Excerpt from v2
Removal of one inner w/ 8 iterations loop using a vector
datatype of 8 elements

Different tested k-means kernel versions

e In this case
o Vectorization removes on inner loop
o We confirmed that Intel's OpenCL runtime performs auto-vectorization

Optimizations - v4/v3

e Workgroup model
o “Normal” for OpenCL workloads
o Nrworkgroups determined by
max. workgroup size and total nr.
of workgroups
o Workgroups — parallel

e I[N this case

o CPU explores parallel work
groups due to independent data

o But FPGA can in addition explore

pipelining of inner loops
o Multiple compute units are
instantiated on the FPGA

__kernel wvoid slkmeansd4 (
global uint xdata, int n, int m, int k, float ¢,
global uint xcentr, global int =xlabels,
?lobal uint s*mindist)
size_t gsz0 get_global_size (0U);
size_t gidO0 get_group_id (0U) ;
int offset = gid0 * (n/gsz0);

int h,- B
for (h = offset; h < offset + (n/gsz0); h++) {
mindist [h] = INT_MAX; C

for (int i 0; 1 < k; i++) {

uint dist = 0; D
for (int j = 0; j < m; J++) {
uint diff = dataflh m + 7j]

- centr[i » m + j];
dist += diffxdiff;

?is:/Z) < (int) (mindist[h]/2)) {
= i;
h] = dist;

Loop A moved to host side (not very paralellizable)
Loop B bounds modified based on workgroup size

Optimizations - vab

Workgroup model with
burst memory access

inference
o Loop E3 - Burst read points
o Uses more device BRAM
o Explicit local multi-port
memories load up to TMPPTS
points

m TMPPTS could have been
larger, up to device limits

uint tmplabels[MAXPTS], tmpdist [MAXPTS] El
__attribute__ (xcl_array_partition(cyclic,16,1));

uint8 tmppts[TMPPTS], tmpcentr([8 * MAXK]

__attribute__ (xcl_array_partition(cyclic,2,1));

(E2 - loop for burst reading into “tmpcentr” omitted)

int ptctr = TMPPTS; B
for(int h = 0; h < npoints; h++) {
if (ptctr == TMPPTS) {
ptotr = 0; E3
for(lnt 3 = 0; j < TMPPTS/2; j++) {
int idx = ((offset + h)/2) % j;
uintlé tmpread = data[idx];
tmppts[(j*2)+0] = tmpread.lo;
tmppts[(j*2)+1] = tmpread.hi;

(...) // compare dist with mindist

ptctr++;

}
(E3 - loop for burst writing into outputs omitted)

Excerpt from v5b

Experimental Setup

e Desktop CPU
o Intel Core i7-6700K CPU (4 GHz)
o Alpha Data ADM-PCIE-KU3
m Kintex-6 XCKUO60 FPGA
o 32 GBRAM

e Execution
o Host allocates input/output memory
o Initial centroids computed using
kmeans++
o OpenCL API using Xilinx’'s runtime for
FPGA target, or Intel's runtime for CPU

e Data
o Generated synthetically by our own
randomly correlated cluster generator

Alpha Data

ADM-PCIE-KU3

50

. i

100 ‘mmmmh 5

!‘W!M

020 40

Example dataset generated for D =2, K=4, N = 4k

60 80 100

10

Experimental Results - Performance on FPGA

Aav2 §8v3
4 13.69 3.6

§ 3.02 59

o
~l

Speedup for v2 over v/
(3]
o
o
%
a
o
ey
Speedup for v3 over v/
(3]

o o ©
S S &S & &8
LTF 6 LT E

Speedup of vectorization alone vs
OpenCL baseline (v1), on FPGA

e .. task kernels w/ and w/o
vectorization

Speedup for v5b8 over v5

80

60

40

20

BB vsbs#4 vs. vs#a 1 B v5bs#4 vs. v5#16

46.8 46.1 454 48.6
15.5 18.1 19,7
‘-bo% (oocb ‘QQ‘b
& o &
o) X
% L <®

Speedup of burst access over analogous
versions (e.g., v5b over v5)

Workgroup kernels w/ vectorization, w/
and w/o burst accesses

11

Experimental Results - Power on FPGA

e Power measured from 16 &

e The best performing
versions (v5b) only support

up to 4 compute units
o (Lack of FPGA resources)

N 15.06 :
post-route reports Z ek ngU
o For all code variants £ 14]46CCliJ =
o For different numbers of § i 55 % o5
compute units (where g 12 2 11.40 BB 1129 /4 =
. ~ 2 ~ R N
2pplicable) OO
2 10 | 933 7
e

3§§§§§; % 7 // %

> & SN
X\ XY N
& &

R

b&\
Z/

Power consumption on FPGA for all cases and
different numbers of CUs

12

Experimental Results - Summary FPGA vs (PU

e Power measured on CPU

. . Best Version Power (W) Energy (J)
using RAPL interface (INKD}H cpy FpGa [SPSYP | cpy FPGA| CPU FPGA
(3282} | vi#l 0.83 132 045

e Compared best performant (64.82) | voi#8 086 40 1109| 069 023
] , (32,162} | ve#2 2 0.75 : 1.69 0.63

code version per device, {64.82} | vo#8 7 0.75 228 0.86
' (32,8.8) | v2#l 0.76 065 025

per prOblem Slze (6488} | vo#l % ozgl .o .l 0% o
L (32,168} | ve#a 2 1.54 ' 1.06 0.20

FPGA Wins! (64,168} | va#1l ~ 1.16 432 1.09

(32,8,16) | v3#l < 0.81 033 0.12

(64816} | v3#l ¥ 13/ 1 OO W .). S v

- (32,16,16) | v3#1 = 150 ~ : 138 028

FPGA Wins! (64,1616} | ve#s = 1.44 146 030

Conclusions

e Mid-grade FPGA can outperform high-end CPU
o Best version 725x faster than OpenCL baseline on FPGA
o But not without significant code re-factoring, producing non-portable OpenCL code
o CPU still faster in most cases, but best FPGA case outperforms CPU by 1.5x with 4.8x
lesser power

e Four public artifacts

o AnImplementation of K-means written in C -
m https://codeocean.com/capsule/3208075/tree/v1

o A Test Harness for Multiple OpenCL Implementations of the k-means Algorithm
m https://codeocean.com/capsule/2348736/tree/v1

o A Generator of Randomly Correlated N-Dimentional Clusters
m 10.13140/RG.2.2.34866.43200

o A Batch of Integer Datasets for Clustering Algorithms
m 10.21227/smta-vv06

14

https://codeocean.com/capsule/3208075/tree/v1
https://codeocean.com/capsule/2348736/tree/v1
https://www.researchgate.net/publication/343255786_A_Generator_of_Randomly_Correlated_N-Dimentional_Clusters?channel=doi&linkId=5f20030da6fdcc9626b9f9b6&showFulltext=true
https://dx.doi.org/10.21227/smta-vv06

