Kxecuting ARMvS Loop Traces on Reconfigurable
Accelerator via Binary Translation Framework

Introduction

Heterogeneous systems allow for tailored solutions
to many applications. However, design time is high.

The goal of this project is to devise techniques that

map computations onto generated accelerators,
aiming for modest but ubiquitous autonomous
acceleration in embedded systems.

The purpose of the Binary Translation Stack is to

implement this flow.

Binary Translation Stack, Part 1:
Detection and Graph Generation
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Details, Features & Challenges

Obtaining Instruction Streams: Static vs Runtime

Dumps of the ELF can be easily obtained, but do not
express real workload. Real time instruction streams
expose real acceleration opportunities, but real on-chip
retrieval of an instruction trace is greatly dependent on
specific system and processor architecture.

We use QEMU emulation to explore opportunities for
future self-adaptive heterogeneous systems.

Future challenge: on-chip real-time retrieval of
instruction streams

Defining ISA Properties
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(Simple) Example Output Code for Single

Instruction Unit Generator
/* (..) generation info (..) */
module add_11000422;

output [31 : 0] wZ;

input [31 : 0] wl;

// implementation for instruction:
// add w2, wl, #0x1
assign w2 = wl + 32'dl;

endmodule

Future challenges: test-bench generation, more
architectures, and automated integration

»

Find the repository on GitHub!
https://github.com/specs-feup/specs-hw

Binary Translation Stack, Part 2:
Transforms and Hardware Generation
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Results and On-Going Work

Results

e Eistimated ILP potential in ARMvS8 applications of 4.8
Instructions per Clock Cycle in Trace Basic Blocks

e [ISA-independent detection of Binary Segments

e Preliminary automated generation of Verilog from
Binary Segments

On-Going Work

e Einhancing the Instruction AST 4 BSG intermediate
representations for further transformations

« Geeneration and synthesis of loop accels for all
current ISAs

e Integration into viable host systems an deployment O
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