Kxecuting ARMvS Loop Traces on Reconfigurable
Accelerator via Binary Translation Framework

Introduction

Heterogeneous systems allow for tailored solutions
to many applications. However, design time is high.

The goal of this project is to devise techniques that

map computations onto generated accelerators,
aiming for modest but ubiquitous autonomous
acceleration in embedded systems.

The purpose of the Binary Translation Stack is to

implement this flow.

Binary Translation Stack, Part 1:
Detection and Graph Generation

Instruction Stream Extraction

Static : Trace-based

C led ELF
(ELF Dump) &] oMU I i) P
| |

v
/ Raw Binary Instruction Stream /
Instruction Interpreters Instruction Properties
ARMvS8 RISC-V Encoding Type
<_
A
MicroBlaze :
: Fields Pseudo-code
(32-bit) «
|
v
/ Interpreted Instruction Stream /
Binary Segment Detection Binary Segment
Scan Instruction Instruction Contexts (Addrs.
Stream Window Sequence and field values)
Candidat{windows \l'
Binary Segment Types / Detector Types
Segment Detector { |
of Single Type
5o P - Frequent Basic Block

Sequences (single-path loops)

| Static Trace Static Trace
Merge Contexts @
Megablocks

J{ (loop trace PathS)Q/ Nested Loops

Static% Trav

/Binary Segment Bundle/ Multi-path
l Trace Loops

Binary Segment Graph
(BSG) Generation

Convert Insts. [Nodes Liveins
to Nodes & Liveouts

l \

Determine Final v

Producer Nodes ﬁ a

l

Binary Segment Graph

Binary Segment Graph Node

—'N
Back-annotate u AST Y
Consumers Instruction -
Statement(s) =
<«
l Expression(s) =
(Grenerate Live- Data & Ctrl. ' A
in/-out Lists Edges ASM Fields « v/

v

/ BSG Bundle /
Fundacao
para a Ciéncia

FCT =5
w’ INESC

Convert

Nuno Paulino (nuno.m.paulino@inesctec.pt), Joao Canas Ferreira (jef@fe.up.pt),

Joao Bispo (joao.bispo@inesctec.pt), Joao M.P. Cardoso (jmpc@fe.up.pt)

INESC TEC & University of Porto, Porto, PORTUGAL

Details, Features & Challenges

Obtaining Instruction Streams: Static vs Runtime

Dumps of the ELF can be easily obtained, but do not
express real workload. Real time instruction streams
expose real acceleration opportunities, but real on-chip
retrieval of an instruction trace is greatly dependent on
specific system and processor architecture.

We use QEMU emulation to explore opportunities for
future self-adaptive heterogeneous systems.

Future challenge: on-chip real-time retrieval of
instruction streams

Defining ISA Properties

Example I\

. Pseudo-code
Segment detection is

independent of the ISA, but
late-stage processing

Kxpresses arithmetic

of instructions, using

requires understanding the ASM fields as

: : operands.

instruction set. The BTF

contains, per ISA, a list of Exampl? ARMvS
Instruction:

properties per instruction.

0x11000422 is:

This allows interpreting of add w2, wl, #0x1

ASM fields and later

translations into ASTs and Pseudo-code s

RD = RN + IMM;

v

(Generate parse tree

(ANTLR) and transform
to Instruction AST

hardware.

Extendable Framework:
partial RISC-V support
(32iam) added in 2 days

Binary Segments ASSIGINENY)

Repeating instruction
sequences with latent ILP
and loop pipeling potential.

Example ARM Basic Block

1sl xa, xa, #shift
add wb, wb, IMMc
ands sp, xa, XcC
b.eq [nzvc], IMMd

(Simple) Example Output Code for Single

Instruction Unit Generator
/* (..) generation info (..) */
module add_11000422;

output [31 : 0] wZ;

input [31 : 0] wl;

// implementation for instruction:
// add w2, wl, #0x1
assign w2 = wl + 32'dl;

endmodule

Future challenges: test-bench generation, more
architectures, and automated integration

»

Find the repository on GitHub!
https://github.com/specs-feup/specs-hw

Binary Translation Stack, Part 2:
Transforms and Hardware Generation

/ BSG Bundle /

v
Conversion to Full Graph AST's (l\//[

Transformations and Optimizations

Y
/ Bundle of Binary)/ Bundle of Full Graph
Segment Graphs Exchangable/Combined ASTs

Representations

— —

BSG Transformations AST Transformations
(Coarse Grain) (Fine Grain)

Loop Sub-graph Expression
Fission/Fusion, ~ Compression , 7 Combination »
Memory Access Other Constant

Pattern Detectio&/ Optimizations! 74 Propagation 7

\—7/ Transformed Graphs /(—\

Hardware Generation Hardware Accelerator Instance
Combine BSG and Instance Verilog AST
. — Name _
AST Information Assigments Statements
i Future Declarations Expressions
Information

Visit Instruction ‘ |
ASTs / Full AST{ 4

l <—
Generate

Hardware AST(s) | Single Instruction
l Y | Unit (for validatioﬂv

Hardware Accelerator Types

@

Loop Accelerator

/Hardware Instance(s)/ Custom Future

y Instruction Uni&/ Architectures!Q/

} X
Synthesis, Compilation, and Deployment v

&
Target Platforms

/ Compiled / Xilinx

ELF VC707)
Hardware

Generation 7
Instance(s) | ™~ V
| Xilinx UltraScale+ Verilator

Program Connect ZCU102 % %
v v

Host Processor
System

Integration Simulation

HDL Testbench

Future Targets! Model Simulation

&7 (via the BTFv

(Legend A

« Complete Partial Q/ Legacy Q/ To-do
- J

Results and On-Going Work

Results

e Eistimated ILP potential in ARMvS8 applications of 4.8
Instructions per Clock Cycle in Trace Basic Blocks

e [ISA-independent detection of Binary Segments

e Preliminary automated generation of Verilog from
Binary Segments

On-Going Work

e Einhancing the Instruction AST 4 BSG intermediate
representations for further transformations

« Geeneration and synthesis of loop accels for all
current ISAs

e Integration into viable host systems an deployment O

O

1. N. Paulino, J. C. Ferreira and J. M. P. Cardoso, “Generation of Customized Accelerators for Lioop Pipélinin |
[nstruction Traces”, in IKEE Trans. on Very Large Scale Integration Systems, vol. 25, no. 1, pp. 21-34, Jan. 201
° 2. N. Paulino, J. C. Ferreira and J. M. P. Cardoso, “Dynamic Partial Reconfiguration of Customized Single-Row

=) i e
3 5 .

2020

4. N. Paulino, (2020): A Breakdown of Binary Acceleration Approaches and Systems. INESC TEC. (Da

. N. Paulino, J. C. Ferreira and J. M. P. Cardoso, “Improving Performance and Ener in ™

Accelerators”, in IEEE Trans. on Very Large Scale Integration Systems, vol. 27, n

. 116—125. 2019

be

via Binary Acceleration: A Survey”, ACM Computing Surveys 53, 1, Article 6 (February 2020),

https://doi.org/10.13140/RG.2.2.27223.62886
Daniel Granhao, “Transparent control flow transfer between CPU and Intel FPGAs”, 2019, Univer
Faculdade de Engenharia

2020, DATE Exhibition

This work was supported by the PEPCC project, “PTDC/EEI-HAC/30848/2017,” financed by Fundacao para a Ciéncia e Tecnologia (Portuguese Foundation for Science and Technology).

™ P 4 —

mailto:nuno.m.paulino@inesctec.pt
mailto:jcf@fe.up.pt
mailto:joao.bispo@inesctec.pt
mailto:jmpc@fe.up.pt
https://pepcc.inesctec.pt/
https://github.com/specs-feup/specs-hw
https://github.com/specs-feup/specs-hw

