
A Binary Translation Framework for Automated
Hardware Generation

1st Nuno Paulino
INESC TEC and

Faculty of Engineering of the University of Porto
Porto, PORTUGAL

nuno.m.paulino@inesctec.pt

2nd João Canas Ferreira
INESC TEC and

Faculty of Engineering of the University of Porto
Porto, PORTUGAL

jcf@fe.up.pt

Index Terms—accelerator, instruction traces, binary accelera-
tion, HW/SW partitioning, heterogeneous systems

Hardware specialization is an efficient solution for max-
imization of performance and minimization of energy con-
sumption. With the emergence of edge systems, designing
energy efficient systems becomes increasingly important.

Emerging compilation flows provide automated generation
of hardware from high-level languages, i.e., High-Level Syn-
thesis (HLS) [Xil17]. Although increasingly appealing, some
hardware related knowledge is still required, and thought must
be put into the design of the underlying heterogeneous system.
Consequently, the effort of hardware/software partitioning
and subsequent hardware generation and validation is only
worthwhile for cases with well identifiable critical kernels.

In contrast, this work is based on automated detection of
workload by analysis of a compiled application, and on the
automated generation of specialized hardware modules. By
offloading the hardware generation effort to a late stage, devel-
oper intervention and effort can be eliminated, and modest but
ubiquitous acceleration can be provided transparently. Previous
work showns the viability of this approach [PFC17], and this
demonstration focuses on on-going work in additional binary
analysis and hardware generation capabilities.

We will present the current version of the binary analysis
and translation framework. Currently, our implementation is
capable of processing ARMv8 and MicroBlaze (32-bit) Exe-
cutable and Linking Format (ELF) files or instruction traces.
In the former case, the contents of the compiled program are
inspected by resorting to the architecture-specific variants of
the objdump utility, and in the later case, execution traces are
obtained via QEMU [Bel05] emulation.

The framework can interpret the instructions for these two
Instruction Set Architectures (ISAs), and decompose their
bitfields in order to extract the specific operation and operands.
This information is used to detect different types of instruction
patterns, which we refer to as binary segments. Currently,
we can detect four types of segment: frequently occuring

This work was supported by the PEPCC project, ”PTDC/EEI-
HAC/30848/2017”, financed by FCT (Fundação para a Ciência e Tecnologia
- Portuguese Fundation for Science and Technology).

Application

Static
Binary

Execution
/Simulation

Traces
/Profiling

Info.

Detection
IR (e.g.
CDFG)

Translation
&

Hardware
Generation

a

b

Fig. 1. Binary translation flow into custom hardware for a flows based on
complied binary and b flows based on binary traces

short sequences of instructions and frequently occuring basic
blocks in the static code, and their counterparts as their occur
dynamically in an instruction stream.

After detection, segments are converted into Control and
Dataflow Graph representations which expose the underlying
Instruction Level Parallelism which we aim to exploit via
automated hardware generation. Additionally, this lays the
groundwork for memory access analysis which we may exploit
for co-generation of specialized memory architectures in order
to maximize memory access parallelism.

On-going work is addressing the extraction of cyclical
execution traces or static code blocks (i.e., loops), the gener-
ation of hardware modules which implement all these binary
segment types, and the automated integration and generation
of the final hardware system. Future work will augment the
framework with support for the RISC-V ISA, since ecosys-
tem surrounding this specific architecture allows for greater
possibilities in generation of custom computing architectures.

REFERENCES

[Bel05] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator.
In USENIX Annual Technical Conference, FREENIX Track, pages
41–46. USENIX, 2005.

[PFC17] N. M. C. Paulino, J. C. Ferreira, and J. M. P. Cardoso. Generation
of customized accelerators for loop pipelining of binary instruction
traces. IEEE Trans. on VLSI Systems, 25(1):21–34, Jan 2017.

[Xil17] Xilinx. Vivado High-Level Synthesis. https://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.html, 2017. Ac-
cessed: 05-06-2017.


