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Overview
● Title: Improving Performance and Energy Consumption in Embedded Systems via Binary Acceleration: A 

Survey (https://doi.org/10.1145/3369764)

● Journal: ACM Computing Surveys
○ Q1 in Computer Science
○ Impact Factor: 6.13 (@2018)
○ Approx. 10-20 citations per paper

● 35 Page survey paper
○ Submitted: 11 Feb. 2019 → R1: 30 Mar. 2019 → R2: 3 Sep. 2019 → Accepted: 2 Oct. 2019!

● Project: PEPCC (Power Efficiency and Performance for Embedded and HPC Systems with Custom CGRAs)

● Keywords: Surveys and overviews; Hardware Accelerators
○ Binary acceleration, instruction traces, (automated) hardware synthesis

Specific focus: dev. of tools, toolflow, and methodologies, for HW/SW design
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50 Years of CMOS Processor Technology
● Dennard Scaling

○ Scale down
○ Voltage down
○ MHz up
○ Heat dissipation → constant

● Too small → current leakage!
● 2005 → End of Single-core scaling

● How far can Multi-Core go?
○ Dark Silicon
○ Amdahl’s Law

15 Years of incremental improvements...

Single-Core Era

Multi-Core Era
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What’s Left to Explore?
● Single-core workloads aren’t nearly as optimized as they could be!

○ “(...) a large amount of ILP that is not being exploited within a 128 to 512 instruction distance.”
○ “Compared to real machines as much as 929x more ILP is available.” 
○ “We found the upper bound on ILP averaged around 200 instructions/cycle (...)”

■ Fatehi et al., “ILP and TLP in shared memory applications: A limit study”, 2014, 23rd International Conference on 
Parallel Architecture and Compilation Techniques (PACT), Edmonton, AB, 2014, pp. 113-125.

● This potential is not fully explored by typical techniques
○ e.g., VLIWs, Superscalar processors, threading, software pipelining, etc

Ergo, application-/workload-specific compute architectures!
How?
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Binary Translation?
● It is a type of re-compilation:

○ Binary code from one ISA → same ISA + transformations OR another target ISA

● Transforming static code
○ Examples: ISA compatibility without re-compilation, instrumentation

● Transforming executing code (i.e. traces)
○ Examples: Java VM, Valgrind, Virtual Machines

This survey: translate binary to hardware descriptions/configurations

Further reading: Wenzl et al., 2019. From Hack to Elaborate Technique – A Survey on Binary Rewriting. ACM Comput. Surv. 
52, 3, Article 49 (June 2019), 37 pages.
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Binary Translation for Acceleration

6



Binary Segments
● Binary instruction lists

● Detected from
○ Static binary
○ Instruction traces

● 4 Major types
○ Frequent sequences
○ Basic Blocks
○ Acyclic blocks
○ Cyclic blocks

Transform sequence → Exploit ILP!
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Binary Segments - Detection
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● Online Detection
○ + More transparent
○ + Profile data
○ - Restricted
○ - Short segments
○ - Difficult translation

● Offline Detection
○ + Unrestricted
○ + More information
○ +/- Compiler integration
○ - Less transparent
○ - More tools required (?)



Binary Segments - Translation
● Extract ILP from Segments → CDFG

● Generate Accelerator Control
○ Assign operations to Accelerator 

Functional Units (FUs)
○ Generation of Custom Instructions
○ Scheduling

● Generate Accelerator Hardware
○ None: pre-designed 
○ Template parameterization
○ Full HDL generation
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Binary Segments - Example

0x330 addk r6, r4, r4 → 0:add
0x334 lhu r7, r6, r5 → 1:add + 2:load
0x338 addik r3, r3, 1 → 3:add
0x33C addk r4, r4, r8 → 4:add
0x340 mul r7, r7, r10 → 5:mul
0x344 addk r7, r7, r12 → 6:add
0x348 bsrl r7, r7, r11 → 7:srl
0x34C cmpu r18, r9, r3 → 8:i_cmpu
0x350 bltid r18, -32 → 9:branch (0x330)
0x354 sh r7, r6, r5 → 10:add + 11:store
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CPU

Instruction 
Memory

Profiling

Instruction Stream Extract Instruction Parallelism

● Example Megablock:



Overview of State-of-the-Art Approaches

Features of Binary Translation Process

● Type of Segment

● Segment Detection

● Segment Translation

● Application Binary Modification

● Type of Acc. Architecture
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Features of Accelerator Architecture

● Acc./Host Interface

● Arrangement of Functional Units

● FU Interconnections

● Supported FU Operations

● Memory Access Capabilities

● Execution Model

● What did I review?
○ +/- 30 papers that rely on some kind of translation of transformation of code to hardware 
○ I created taxonomies to classify the binary translation, and accelerator architectures:



Accelerator Architectures - System Level View
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Pipeline 
integration

(tight coupling)

Peripheral
connection
(loose coupling)



Accelerator Architectures - Structure & Function
● Two design types:

○ Mesh-based
○ Row-based

● Mesh Designs
○ Apt for loop acceleration
○ Homogeneous
○ (More) Scalable
○ Peripheral-based

● Row Designs
○ Apt for instruction compression
○ Multi- or Single-Row
○ (More) Heterogeneous
○ Difficult to scale
○ Data directionality
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Accelerator Architectures - Execution Example
● Modulo-scheduling in a small mesh architecture
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Initiation 
Interval



My Work - Custom Loop Accelerator (CLA)
● Single-processor system

○ Bare-metal
○ FPGA Implementation
○ Soft-core 32 Bit RISC processor

● Accelerator
○ Automatically generated by 

offline profiling tools
○ Executes frequent loop paths

■ Exploits ILP
■ Exploits pipelining

● Experiments
○ MicroBlaze @100/150MHz
○ 5.6x Speedup (24 benchmarks)

● References: [16]
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My Work - Custom Loop Accelerator (CLA)
● Tailored for 1+ Loop traces

● Modulo-scheduled loops
○ Resource reutilization

● Customized row of single-function units
○ VLIW-like execution
○ Fully-pipelined, non blocking units
○ Tailored connectivity (min. required)
○ Minimum possible Initiation Intervals
○ Integer + Floating Point Arithmetic
○ Up to two arbitrary memory accesses

● Mixed Granularity Reconfiguration
○ Fast Context Switching
○ Dynamic Partial Reconfiguration
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Summary - Overview of Binary Translation
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Summary - Overview of Accelerator Architectures
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Summary - Performance and Power Improvements
Approach 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15)

Speedup 3.2x 1.9x 2.6x 2.2x 2.2x 1.1x 5.6x 12.0x 2.5x 9.4x 1.1x 2.0x 7.1x 3.0x 3.3x

Power 
Reduction 2.9x 1.3x 2.2x N/A 1.7x 1.5x 3.9x 12.0x 8.3x N/A N/A N/A 1.6x 1.1x 11.0x

1) Warp; 2) ADEXOR; 3) DIM; 4) CCA; 5) DySE; 6) BERET; 7) CLA; 8) PLA; 9) PPA; 10) Paek et.al; 
11) Chen et al.; 12) Ferreira et al.; 13) ASTRO; 14) Malazgirt et al.; 15) Rokicki et al.

Typical baselines/target systems: 
● Single-thread, single-issue, bare-metal environments
● ARM, SPARC, Microblaze, MIPS based processors, VLIWs

○ i.e., RISC architectures → simpler binary segment detection and translation

Competing with higher-end multi-core devices is unlikely, but 
improvements are promising for power-constrained embedded systems
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Conclusion
● Advantages

○ Acceleration of embedded applications by automatic specialization of hardware
○ Makes use of available resources if deployment platforms are FPGAs
○ Low effort acceleration of applications, abstracted from software development

● Open Issues?
○ Proper tools
○ Programming models
○ Support for multiple ISA
○ Integration into end-system

● Future trends?
○ Fully-fledged Multi-processor/Multi-core SoCs with FPGAs?
○ Desktop processors with reconfigurable hardware? e.g. Intel’s Xeon+FPGA Family
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WARP Processor
● Custom reconf. fabric (1)

● Runtime binary profiling (2)
○ Hot Basic Blocks (HBBs)

● Runtime binary translation (3)
○ Disassembly
○ Binary Modification

● Experiments
○ 0.18um simulation
○ MicroBlaze @100MHz
○ 5.1x speedup (6 int. bench.)

● References: [5]
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AMBER/ADEXOR
● Rows of multi-function 

homogeneous units
○ Integrated into pipeline

● Offline binary profiling
○ Hot Basic Blocks (HBBs)

● Offline binary translation
○ Operation allocation +
○ Creation of custom instructions

● Experiments
○ 0.18um simulation
○ MIPS-based @300MHz
○ 1.2x speedup (14 int. bench.)

● References: [8]
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Dynamic Instruction Merging (DIM)
● Homogeneous rows of 

heterogeneous FUs
○ Integrated into the decode 

stage

● Online binary profiling
○ Hot Basic Blocks

● Online binary translation
○ ASAP scheduling into array
○ Generation of control bits

● Experiments
○ 0.18um simulation
○ MIPS-based processor @
○ 2.6x speedup (18 benchmarks)

● References: [10]
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Configurable Compute Accelerator (CCA)
● Rows of single-function 

heterogeneous units (1)
○ Integrated into pipeline

● On/Offline binary profiling (2)
○ Sequences of HBBs

● On/Offline binary translation (3)
○ Creation of CCA configs, 

replacement of original code

● Experiments
○ 4-issue ARM (simulation)
○ 1.3x speedup (11 int. bench.)

● References: [1]
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Dynamically Specialized Execution (DySE)
● Multi-directional mesh of 

heterogeneous units
○ Integrated into pipeline

● Offline binary profiling
○ Frequent BB loop paths

● Offline binary translation
○ Operation allocation +
○ Creation of custom instructions

● Experiments
○ 55nm simulation
○ SPARC Based processor
○ 2.2x speedup (23 benchmarks)

● References: [9]
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Bundled Execution of Recurring Traces (BERET)
● Set of sub-graph accelerators

○ Integrated into pipeline

● Offline binary profiling
○ Compile-time superblock 

detection

● Offline binary translation
○ Static set of SEBs
○ Assign sub-graphs of the 

superlocks to specific SEBs

● Experiments
○ 65nm evaluation
○ ARM @800MHz
○ 1.1x speedup(12 benchmarks)

● References: [6]
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Custom Loop Accelerator (CLA)
● Single-Row of Single Function Units

○ Peripheral Connection

● Offline binary profiling
○ Frequent loop paths

● Offline binary translation
○ Customize row in function of 

modulo-scheduling loops

● Experiments
○ FPGA Implementation
○ MicroBlaze @100/150MHz
○ 5.6x Speedup (24 benchmarks)

● References: [16]
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