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Overview

e Title: Improving Performance and Energy Consumption in Embedded Systems via Binary Acceleration. A
Survey (https.//doi.org/10.1145/3369764)

e Journal: ACM Computing Surveys
o Q1 in Computer Science
o Impact Factor: 6.13 (@2018)
o  Approx. 10-20 citations per paper

e 35 Page survey paper
o  Submitted: 11 Feb. 2019 — R1: 30 Mar. 2019 — R2: 3 Sep. 2019 — Accepted: 2 Oct. 2019!

e Project: PEPCC (Power Efficiency and Performance for Embedded and HPC Systems with Custom CGRAS)

Keywords: Surveys and overviews; Hardware Accelerators
o  Binary acceleration, instruction traces, (automated) hardware synthesis

Specific focus: dev. of tools, toolflow, and methodologies, for HW/SW design



30 Years of CMOS Processor Technology

e Dennard Scaling
o  Scale down
o Voltage down
o MHzup
o Heatdissipation — constant

e Too small — current leakage!
2005 — End of Single-core scaling

e How far can Multi-Core go?

o  Dark Silicon
o Amdahl's Law

15 Years of incremental improvements...
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Fig. 1. Trends for desktop and server grade processors throughout the last 50 years, built from 950 data points
from CPU DB [23] and Intel’s and AMD’s product pages




What's Left to Explore?

e Single-core workloads aren't nearly as optimized as they could be!
o “(..)alarge amount of ILP that is not being exploited within a 128 to 512 instruction distance.”
o “Compared to real machines as much as 929x more ILP is available.”

o “We found the upper bound on ILP averaged around 200 instructions/cycle (...)”

m  fatehietal, “ILP and TLP in shared memory applications: A limit study”, 2014, 23rd International Conference on
Parallel Architecture and Compilation Techniques (PACT), Edmonton, AB, 2014, pp. 113-125.

e This potential is not fully explored by typical techniques

o e.g., VLIWSs, Superscalar processors, threading, software pipelining, etc

Ergo, application-/workload-specific compute architectures!
How?



Binary Translation?

e |tis atype of re-compilation:
o Binary code from one ISA — same ISA + transformations OR another target ISA

e Transforming static code
o Examples: ISA compatibility without re-compilation, instrumentation

e Transforming executing code (i.e. traces)
o Examples:Java VM, Valgrind, Virtual Machines

This survey: translate binary to hardware descriptions/configurations

Further reading: Wenzl et al., 2019. From Hack to Elaborate Technique - A Survey on Binary Rewriting. ACM Comput. Surv.
52, 3, Article 49 (June 2019), 37 pages.



Binary Translation for Acceleration
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Fig. 2. High-level generic representation of binary translation flow into custom hardware (a - flows based on
complied binary, b - flows based on binary traces)



Binary Segments

Binary instruction lists

Transform sequence — Exploit ILP!

Detected from
o  Static binary
o Instruction traces

4 Major types

Frequent sequences

O

o  Basic Blocks
o Acyclic blocks
o  Cyclic blocks
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Fig. 3. Four types of binary segments than can be extracted from sequences of binary instructions




Binary Segments - Detection

e Online Detection
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Fig. 4. Different methods for detection of binary segments




Binary Segments - Translation

e Extract ILP from Segments — CDFG oo
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Fig. 5. Processes that may be involved in a translation step



Binary Segments - Example

Example Megablock:

CPU

Instruction Stream

0x330 addk
0x334 Ihu

Profiling

0x338 addik
0x33C addk

Instruction
Memory

0x340 mul
0x344 addk
0x348 bsrl
0x34C cmpu
0x350 bltid
0x354 sh

ro, r4, r4
r7,ro, r5
r3,r3,1
rd,rd, r8
r7,r7,r10
r7,r7,r12
r7,r7,r
r18,ro, r3
rg, -32
r7,ro, r5

Extract Instruction Parallelism

\

'0:add

— 1:add + 2:load
— 3:add

— 4:add

— 5mul

— 6:add

— 7:srl

— 8l_cmpu

— 9:branch (0x330)
— 10:add + 11:store
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Overview of State-of-the-Art Approaches

e Whatdid | review?
+/- 30 papers that rely on some kind of translation of transformation of code to hardware
| created taxonomies to classify the binary translation, and accelerator architectures:

(@)

(@)

Features of Binary Translation Process

Type of Segment

Segment Detection

Segment Translation
Application Binary Modification

Type of Acc. Architecture

Features of Accelerator Architecture

Acc./Host Interface
Arrangement of Functional Units
FU Interconnections

Supported FU Operations
Memory Access Capabilities

Execution Model

11



Accelerator Architectures - System Level View

Pipeline Register IF
integration Bile ID
tight couplin I —
(tig Mp{ [Accelerator| | EX |
B
...;; \ /
w o v
SEhY MEM
=i WB | CPU

(a) Tight coupling into host pro-

cessor pipeline

Shared l

Local RAM.

CPU : ; Accelerator
: Memory ;
Peripheral Bus )
3 y
N T
Other External Internal
Peripherals RAM RAM

(b) Loose coupling via: 1) point-to- point connection;
or 2) bus connection

Peripheral
connection
(loose coupling)

Fig. 6. Different interfaces between host processor and accelerator (optional components in dotted lines)



Accelerator Architectures - Structure & Function

e Two design types:

o Mesh-based Configuration Memory SIRYETER"
o  Row-based o I
FU Array
2 L
PY Mesh Designs FUO FU1 FU2 FU3
. 3 i i i ]
o  Apt for loop acceleration 2| |&
o Homogeneous £ 2 FU4 [+ FU5 |+~ FU6 |~—| FU7
e E |-
| |5
o (More) Scalable 2l (g ! ! | ! [L5] [L5]
. 3 FU8 FU9 FU1 FU11
o Peripheral-based DRI ; ; 1
L7
PY Row Des|gns [FU12+~—>FU13~—>FUl4+~—FUL5 g

o Apt forinstruction compression (a) Mesh arrangement (adapted from [51]) (b)  Row-based  arrangement
o Multi- or Single-Row (adapted from [19])
© (I\/If?re)| Heterofgeneous Fig. 7. Two Functional Unit arrangements and interconnections for accelerators
o  Difficult to scale
o  Data directionality
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Accelerator Architectures - Execution Example

e Modulo-scheduling in a small mesh architecture
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Fig. 8. Modulo scheduling performed on mesh arrays (adapted from [51]). The dark Processing Elements
(PEs) in Figure 8a are capable of memory accesses, and dark nodes in Figure 8b are memory access operations.
In Figure 8c, dashed nodes represent iteration i-1, and solid nodes represent iteration i.
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My Work - Custom Loop Accelerator (CLA)

Single-processor system
o  Bare-metal
o  FPGA Implementation
o  Soft-core 32 Bit RISC processor

Accelerator
o  Automatically generated by
offline profiling tools
o  Executes frequent loop paths
m  Exploits ILP
m  Exploits pipelining

Experiments
o  MicroBlaze @100/150MHz
o  5.6x Speedup (24 benchmarks)

References: [16]
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(b) System architecture
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My Work - Custom Loop Accelerator (CLA)

e Tailored for 1+ Loop traces

e  Modulo-scheduled loops
o  Resource reutilization

e  Customized row of single-function units
VLIW-like execution

Fully-pipelined, non blocking units
Tailored connectivity (min. required)
Minimum possible Initiation Intervals
Integer + Floating Point Arithmetic
Up to two arbitrary memory accesses

o O O O O O

e Mixed Granularity Reconfiguration
o  Fast Context Switching
o Dynamic Partial Reconfiguration

From GPP —

Input regs.
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(a) CLA architecture
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summary - Overview of Binary Translation

Segment Type Binary Translation Accelerator Type

Binary Modification

Binary Detection

@ Static Design
@ Template Based
@ Full Custom

@ Compile-Time
@ Post-Compile @ Runtime

@ static @ Acyclic
@ Cyclic

@ Static Analysis @ Compile-Time
@ Offline Profling @ Post-Compile
@ Online Profiling @ Runtime/None

17




sSummary - Overview of Accelerator Architectures

Structure Supported Operations Memory Support

@ Mesh @ Multi-Row @ Limited Int./Logic @ Full Integer @ None @ 1Sequential Access
® Ssingle-Row @ Full Custom ® +Fixed/FloatPt. @ +FullFloatPt. @ 1 Arbitrary/+1 Seq. 1 more




Summary - Performance and Power Improvements

- 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 1) 12) 13) 14) 15)

Speedup 3.2% 1.9x 2.6X 2.2% 2.2X 1.1x 56x  12.0x 2.5% 9.4x 1.1x 2.0x 7.1% 3.0x 3.3x

Power

: 2.9x 1.3x 2.2% 1.7% 1.5x 3.9x 12.0x 8.3x 1.6X 7.1x  11.0x
Reduction

1) Warp; 2) ADEXOR; 3) DIM; 4) CCA; 5) DySE; 6) BERET; 7) CLA; 8) PLA; 9) PPA; 10) Paek et.al;
11) Chen et al,; 12) Ferreira et al.; 13) ASTRO; 14) Malazgirt et al.; 15) Rokicki et al.

Typical baselines/target systems:
e Single-thread, single-issue, bare-metal environments
e ARM, SPARC, Microblaze, MIPS based processors, VLIWs
o i.e, RISC architectures — simpler binary segment detection and translation

Competing with higher-end multi-core devices is unlikely, but
improvements are promising for power-constrained embedded systems



Conclusion

e Advantages
o Acceleration of embedded applications by automatic specialization of hardware
o Makes use of available resources if deployment platforms are FPGAs
o Low effort acceleration of applications, abstracted from software development

e Open Issues?

Proper tools

Programming models
Support for multiple ISA
Integration into end-system

O O O O

e Future trends?
o  Fully-fledged Multi-processor/Multi-core SoCs with FPGAS?
o Desktop processors with reconfigurable hardware? e.g. Intel's Xeon+FPGA Family

20
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WARP Processor

Custom reconf. fabric (1)

Runtime binary profiling (2)
o  Hot Basic Blocks (HBBs)

Runtime binary translation (3)
o  Disassembly
o  Binary Modification

Experiments
o 0.18um simulation
o  MicroBlaze @100MHz
o 5.1x speedup (6 int. bench.)

References: [5]
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Fig. 9. The MicroBlaze-based Warp processor system. An additional processor performs runtime binary

segment detection and translation [58].
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AMBER /ADEXOR

e  Rows of multi-function
homogeneous units
o Integrated into pipeline

e  Offline binary profiling
o  Hot Basic Blocks (HBBS)

e  Offline binary translation
o Operation allocation +
o  Creation of custom instructions

e Experiments
o 0.18um simulation
o MIPS-based @300MHz
o 1.2xspeedup (14 int. bench.)

e References: [8]
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Fig. 10. FU array coupled to the processor pipeline in the AMBER/ADEXOR approach (adapted from [68]).



Dynamic Instruction Merging (DIM

e Homogeneous rows of Tnput e Output
context context

heterogeneous FUs Y Col.#1 Col.#n .

o Integrated into the decode g:  Row #1 [su[mu]aw] [Fo[ao]aw] [we[sw[my] ;

ALUJALU | ALU ALU| ALU | ALU ALUJALU [ALU

stage

ALU| ALU | ALU ALU| ALU | ALU ALU[ALU | ALU

Reconfiguration

memory

e Online binary profiling

o  Hot Basic Blocks
e Online binary translation -
o  ASAP scheduling into array £ [
o Generation of control bits 2l2] [2
e Experiments )
o 0.18um simulation

o MIPS-based processor @
o  2.6x speedup (18 benchmarks)

Fig. 11. DIM approach: runtime binary translation for a tightly integrated array (adapted from [80]).

e References: [10]




Configurable Compute Accelerator (CCA

® Rows of single-function

heterogeneous units (1) ¥ —_— Live Ins, CCA c(,,,nuLchuh.(h.x |
H H H o | : CCA Contyol} Live 72 S
o Integrated into pipeline (;
C;u-lﬁg;
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Config Cache Index|

Control
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e  On/Offline binary profiling (2)
o  Sequences of HBBs

Instructions

®

Results
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© 1.3x Speedup (11 int. bench.) Fig. 12. The CCA array is coupled into the processor pipeline. Execution is shifted towards the CCA after

generating configurations for offline delimited regions of code [17].
® References: [1]




Dynamically Specialized Execution (DySE)

e  Multi-directional mesh of
heterogeneous units

o |ntegrated into pipe”ne __Fetch : Decode : Execute : Memory : Writeback >
e  Offline binary profiling {Cache | Decode ) e . o

o Frequent BB loop paths & AN\l 2

Register ’- = sz.zx—)g

e  Offline binary translation e g ﬂ @\H ﬂ 5 DCache

o Operation allocation + . E%R/{:» [, 5

o Creation of custom instructions Z ” @‘/H H g T
e Experiments Switches : sﬂ/":%{‘: L&

Functional Unit | Dynamic Synthesized Execution Resourcesl

o 55nm simulation
o  SPARC Based processor
o  2.2x speedup (23 benchmarks)

Fig. 13. DySER Architecture and Organization (adapted from [40])

e References: [9]

26




Bundled Execution of Recurring Traces (BERET)

e Set of sub-graph accelerators
o Integrated into pipeline

e Offline binary profiling P Pt it [ l ol .
o  Compile-time superblock Inwﬁm[ — oo [ Cache
detection Cache Logic Register File bypass 23
= Register File index bits i »a
e Offline binary translation §§ I T 1] |
o  Static set of SEBs B NI
o  Assign sub-graphs of the gv = - sl [SERD) 1@ @
superlocks to specific SEBs | ) lwmeback _ ¥ ]| g’
e Experiments A o
© 65nm evaluation Fig. 14. Sub-graph Execution Blocks (SEBs) in BERET coupled to processor pipeline (adapted from [44]).

o ARM @800MHz
o 1.1x speedup(12 benchmarks)

e References: [6]
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Custom Loop Accelerator (CLA)

e Single-Row of Single Function Units

o  Peripheral Connection Input regs.
e  Offline binary profiling From (PP _"—‘—k— v Y
o Frequent loop paths v Trryorrosorraroerayory 5
e Offline binary translation ) le/st L 1 v 8y |8 S
: =
o  Customize row in function of b 1d/st F[,H FIIJ2 FUS [ BUA | . %0?
modulo-scheduling loops ' bé — . T
¥ i+1 y y
e Experiments : a_ : ‘ - Bt poas.
o  FPGA Implementation b. g N hLJ &
o MicroBlaze @100/150MHz Register B &= | —
o 5.6x Speedup (24 benchmarks) Pool | Finan O—E:" To GPP
e iy el

e References: [16]

(a) CLA architecture
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